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In this letter, we show through numerical simulations and analytical results that overlapping
multiple (N) laser beams in plasmas can lead to strong turbulent ion heating from many (∝ N2)
electrostatic perturbations driven by beat waves between pairs of laser beams. For typical inertial
confinement fusion experiments conditions, hundreds of such beat waves are driven in mm3-scale
plasmas, leading to ion heating rates of several keVs/ns. This mechanism has important conse-
quences for the saturation of cross-beam energy transfer and the overall hydrodynamics evolution
of such laser-plasma systems.

Experiments on large scale laser facilities exploring
High Energy Density Physics (HEDP) or Inertial Con-
finement Fusion (ICF) often require overlapping mul-
tiple intense (> 1014W/cm2) laser beams in plasmas
[1–3]. This leads to a wide range of new and complex
multi-beam laser-plasma interaction phenomena such as
cross-beam energy transfer (CBET) [4], which plays a
crucial role for both the indirect-drive and direct-drive
approaches to ICF. On indirect-drive experiments at the
National Ignition Facility (NIF), CBET is used at an ad-
vantage via laser wavelengths adjustments to tune the
ICF targets’ implosion symmetry [5–7]. On the other
hand, for direct-drive experiments at the Omega facil-
ity, CBET tends to reduce the laser energy absorbed
in the corona and is mitigated by adjusting the laser
beams’ radii [8, 9]. In such situations, the overlap of N
laser beams generates N(N − 1)/2 individual beat waves
whose phase velocities are fixed (determined by the laser
beams’ wavelengths and directions), and can be near the
ion acoustic velocity due to either small wavelength ad-
justments as is done on NIF (cf. Fig. 1), or to sonic flows
as in direct-drive experiments. Each beat wave drives an
electrostatic potential via the ponderomotive force, with
a resulting density perturbation which is largest as the
beat wave’s phase velocity approaches the ion acoustic
velocity. The scattering of laser light on these driven
fluctuations can transfer momentum and energy to the
plasma: for each photon scattered from laser beam n
to laser beam m, the momentum and energy transferred
are respectively δp = ~(kn− km) and δU = ~(ωn−ωm),
where ωm,n and km,n are the photons’ frequencies and
wave vectors. Thus, overlapping many of these driven
waves can in principle affect the hydrodynamics evolu-
tion.

In this letter, we show that the interactions of many
beat waves with a plasma can lead to strong turbulent
heating of the ions and modify the local hydrodynamic
conditions where multiple laser beams overlap. This
can in turn strongly modify the laser-plasma interaction
mechanisms that take place in such regions, such as
CBET. Using a particle code including binary collisions,
we show that the beat waves create an energetic tail
in the ion distribution function over time scales of a
few ion bounce periods. Then, on time scales longer

than the ion-ion collision time, collisions transfer the
energy from the hot tail into the bulk; the distribu-
tion recovers a nearly-Maxwellian shape, but with a
rapidly-increasing temperature and a change in average
(flow) velocity. For typical NIF conditions, we calculate
ion heating rates of several keVs/ns, which also leads
to a '50% increase of the ion acoustic velocity in less
than a nanosecond. The ion heating process can in
turn saturate CBET; for similar NIF conditions, we
calculate a reduction of CBET linear gains by ∼4-5×.
The process eventually stabilizes as the ion acoustic
velocity becomes larger than the drivers’ phase velocities.

FIG. 1: Schematic view of a NIF hohlraum laser entrance
hole; 24 quadruplets of laser beams overlap in a mm3-scale
plasma at each laser entrance hole, leading to 276 possible in-
dividual pairs. Each pair of quads (m,n) drives a beat wave
with a phase velocity vφ,k = kωk/k

2, where ωk = ωn − ωm
and k = kn − km. The beat waves’ vφ,k are represented on
the right (green arrows), for a wavelength separation between
inner and outer beams of ∆λ=2 Å (defined at the laser wave-
length on target, λ0 '351 nm).

Our numerical model calculates the ion distribution
function fi(r,v, t) by integrating equations of motion of
particles in the presence of many beat waves and colli-
sions; the resulting space-averaged particle distribution
function is then used to calculate the self-consistent evo-
lution of the fields. Each beat wave between two lasers
(m,n) with frequencies ωm,n and wave vectors km,n cre-

ates a ponderomotive potential φp,k = 1
2 φ̂p,k exp[iψk] +
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c.c. oscillating at the beat wave’s phase, ψk = k · r −
ωkt + νk, where ωk = ωn − ωm, k = kn − km and νk is
a random phase term between 0 and 2π which accounts
for the fact that laser beams on large scale facilities are
typically optically smoothed and thus uncorrelated with
one-another. Beat waves from two laser beams with dif-
ferent frequencies (ωk 6= 0) have a finite phase veloc-
ity vφ,k = kωk/k

2. The ponderomotive potential acts
on the electrons to create a charge separation which re-

sults in an electrostatic potential φk = 1
2 φ̂k exp[iψk]+c.c.

which acts on both the electrons and the ions. The equa-
tions of motion for the ions are integrated with a Runge
Kutta method in the presence of many of these electro-
static potentials and with ion-ion collisions, Midvi/dt =
−qi

∑
k∇φk(r, t) + C̄i−i, where Mi and qi are the ion

mass and charge, and C̄i−i is a binary ion-ion collision
operator based on the scheme from Takizuka and Abe
[10]. Here we assume that the electrons response is linear
and that their averaged distribution remains Maxwellian
with a constant temperature. As will be discussed later,
only ion-ion collisions will be significant for ICF-relevant
conditions; electron-ion thermal equilibration rates are
typically too slow for the ions to affect the electron tem-
perature.

The resulting ion distribution function is used to self-
consistently calculate the evolution of the electrostatic
potentials. The main assumption of the model is that
these potentials have spatially uniform, slowly time-

varying envelopes, φ̂k = φ̂k(t), and follow the time-
evolution of the spatially averaged distribution func-
tion. Wave-wave couplings are neglected. The ion
distribution is thus decomposed into its spatial av-
erage and the responses to the waves, fi(r,v, t) =
fi0(v, t) +

∑
k δfik(r,v, t), where fi0 varies slowly com-

pared to the fast oscillations of the beat waves. Pois-
son’s equation connects each beat wave’s electrostatic po-
tential to the resulting density perturbation: −∇2φk =
4π
∑
α

∫
d3vδfαk where α is the particle specie (= e or

i). Combining it with Vlasov equation, [∂t + v · ∇ −
(qα/mα)

∑
k∇(φk + δeαφp,k)∂v]fα = 0, where δαα′ is a

Kronecker delta, we get the expression for the electro-
static potential driven by the ponderomotive potential:

(1 + χek + χik)φ̂k = −χekφ̂p,k. For hot plasmas (≥ 1
keV), the phase velocities are negligible compared to the
electron thermal velocity, vφ,k � vTe, so the electron
susceptibility is χek ' 1/(kλDe)

2 (calculations with elec-
trons showed no changes in their distribution function;
in the following we will thus only consider the evolution
of the ion distribution). On the other hand, the beat
waves’ phase velocities can be of the same order as (or
larger than) the ion thermal velocity. The ion susceptibil-
ity evolution follows the space-averaged ion distribution:

χik(t) =
4πq2i
k2mi

∫
k · ∂fi0(v, t)

∂v

d3v

ω − k · v
. (1)

The amplitudes of the electrostatic potentials thus fol-
low the slowly-varying space-averaged distribution func-

tion fi0,with:

φk(r, t) = |φ̂p,k|
χek

|1 + χek + χik(t)|
cos[ψk(r, t)]. (2)

The integration in Eq. (1) is carried out numerically
similarly to Ref. [11]. The expression for each pon-
deromotive potential φp,k created by two laser beams
(m,n) with circular polarizations (or, equivalently, two
NIF quads with polarization smoothing) crossing at an

angle θmn is |φ̂p,k| = 1
4 (mec

2/e)aman(1 + cos2 θmn)1/2,

where a = vosc/c ≈ 0.85(I18λ
2
µ)1/2 is the normalized

laser vector potential (I18 is the laser intensity in units
of 1018W/cm2 and λµ its wavelength in microns). In
the case of two beams with parallel polarizations, we

have |φ̂p,k| = 1
2 (mec

2/e)aman.

We present calculations for the entrance hole of a
NIF hohlraum, where 24 quadruplets or “quads” of laser
beams cross, generating 276 beat waves overlapping in a
mm3-scale plasma (cf. Fig. 1). The quads are grouped in
four cones propagating at 23.5◦ (4 quads), 30◦ (4 quads),
44.5◦ (8 quads) and 50◦ (8 quads) from the hohlraum
axis; the “inner quads” (23.5◦ and 30◦ ) have an aver-
age intensity of 5 × 1014W/cm2 and the “outer quads”
(44.5◦ and 50◦ ) are at 1015W/cm2. The initial electron
and ion temperatures are 2.8 and 0.8 keV respectively,
the electron density is 3% of critical, and the plasma is
He (Z=2); these are typical conditions at the beginning
of the main (“fourth”) NIF laser pulse. The 128 beat
waves between an inner and an outer quad have a fi-
nite phase velocity, set by a wavelength shift of 2 Å (at
λ0=351 nm) between inner and outer quads [5, 12]. The
148 others, generated by pairs of laser beams with simi-
lar wavelengths, are stationary in the laboratory frame,
vφ=0. For these conditions, the ion-ion collision time is
τii '60 ps. On the other hand, the thermal equilibra-
tion time for the electrons is τe|i ' 6 ns [13]; this is too
slow to be relevant for our conditions and is why we only
consider ion-ion collisions in our model.

The evolution of the ion distribution function is shown
on Fig. 2 for typical NIF conditions. The 276 green
dots represent the beat waves’ phase velocities. Due to
the NIF geometry, the problem is axisymmetric around
z, the hohlraum axis (cf. Fig. 1). The ion distribu-
tion is initially Maxwellian at t=0. Some of the beat
waves have their phase velocities near the acoustic ve-
locity cs, which is represented as a cyan iso-contour line.
These beat waves drive the strongest electrostatic pertur-
bations. Overall, the initial electrostatic potentials am-

plitudes φ̂k are in the range [10−6− 10−5]mec
2/e, corre-

sponding to density perturbations δn/n ≈ [10−4−10−3].
The ion bounce periods τb are of a few ps.

In the early stages, for times smaller than the collision

time (t≤ τii '60 ps), some potentials φ̂k(t) exhibit non-
linear oscillations at τb due to trapped particles, similarly
to Ref. [14]. However, after a few bounce periods, tur-
bulence starts to dominate, diffusing particles between
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FIG. 2: Ion velocity distribution function log[fi(v)], plotted
vs. vz and vr (the distribution is axisymmetric along z) at
times t=0, 40, 200 and 500 ps. The cyan contour line repre-
sents the ion acoustic velocity cs, and the green dots represent
the 276 electrostatic drivers for the NIF geometry with ∆λ=6
Å. The initial plasma conditions are Te=2.8 keV, Ti=0.8 keV,
ne/nc=3% and Z=2 (He), and the laser beams intensities are
5× 1014 and 1015 W/cm2 for the “inner” and “outer” beams,
respectively. These are typical conditions at the laser en-
trance holes of a NIF hohlraum during the early part of the
main laser pulse.

multiple overlapping resonances. The non-linear oscilla-
tions disappear, and an energetic tail starts to develop
in the ion distribution near the velocity of the fastest
drivers, around 3 to 4 times the initial ion thermal veloc-
ity vTi0, as is shown in Fig. 2 at t=40 ps. At this stage,
the electrostatic potentials exhibit a complex evolution;
the distortion of the distribution function can either de-
crease or increase their amplitudes, and overall, the trend
is generally upwards. The total kinetic energy of the par-
ticles rapidly increases due to continuous injection of ions
into the hot tail.

At later times, for t� τii, ion-ion collisions restore the
energy from the hot tail back into the bulk, leading to
an increase in ion temperature. After 200 ps, the bulk of
ions has broadened and reached a thermal velocity close
to the phase velocity of the fastest drivers; the tail that
was present at t=40 ps is now barely visible. At t=500
ps, the distribution resembles a drifting Maxwellian.

The thermal energy of the particles and their average
velocity are shown in Fig. 3a-b. The ion temperature
increases up to 4 keV in less than a nanosecond, and the
particles acquire a drift 〈vz〉 of about 107 cm/s due to
momentum deposition [15]. The acoustic velocity cs =
[(ZkBTe + 3kBTi)/Mi]

1/2 increases from 4.4×107 cm/s

to 6.7×107 cm/s in 1 ns.

FIG. 3: Time evolution of: a) ion temperature (defined as
kTi = 1

3
Mi(〈v2〉 − 〈v〉2)), b) average velocity, and c) the av-

erage exponential CBET spatial gain for a NIF inner beam.
The black curves are the results from the code, and the dashed
red are from the quasi-linear reduced model described in the
text.

Such ion heating rates are in qualitative agreement
with simple estimates based on the conservation of action
[16] during the CBET process, using experimental mea-
surements. Typically, symmetric implosions on NIF for
420 TW shots require transferring 100-150 TW between
laser beams in a 'mm3-size plasma near the hohlraum’s
laser entrance holes. The power density deposited into
plasma waves is therefore [100-150] TW×δλ/λ0 ' 60 to
120 GW/mm3 for wavelength separations between laser
beams of 2-3 Å (and λ0=351 nm). Assuming an aver-
age ion density ni = 1.35 × 1020 cm−3, and that all the
waves energy eventually gets converted into heat, we get
ion heating rates of 2-5 keVs/ns.

Since the volume where all the beams overlap is of the
order of a mm3, the flow (similar to a Mach 1 nozzle flow
near the entrance hole) will totally replace the ion popu-
lation in that volume in 2-3 ns; the other hydrodynamics
conditions will also change, which is why we limit our
calculations to 1 ns.

The effect of ion heating on CBET is represented in
Fig. 3c, which shows the average spatial gain exponent
for the NIF “inner beams”. The gain is defined using
the convective growth formula for beam m from beam n
[12, 15]:

∂za
2
m = − χ2

ekIm(χik)

|1 + χek + χik|2
k2

16km
a2ma

2
n

[
1 + cos2(θmn)

]
.(3)

Fig. 3c represents the average over all NIF’s “inner
beams” of the linearized gain on intensities γm such that
a2m(z + δz) ≈ a2m(z) exp[γmδz].

The gain drops by a factor ∼ 4 − 5, which could help
explain the observed saturation of CBET in both direct-
and indirect-drive experiments despite very low levels of
density fluctuations [8, 17, 18].

The heating rate eventually drops: the temperature
increases up to the point where the acoustic velocity
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(cyan iso-contour on Fig. 2) reaches the largest drivers’
phase velocities (soon after t=200 ps in our simulations).
From then on, the ion acoustic resonance will be moved
further away from the beat waves’ fixed phase velocities,
which will rapidly reduce their coupling to the plasma
and thus rapidly slow down the ion heating. This also
means that the plasma will set itself back into a regime
where the individual waves responses are essentially
linear, by pushing the resonance away from the waves.

Since collisions tend to rapidly thermalize the hot ion
tail and restore a Maxwellian shape for the distribution
function, we can derive a simple reduced model based on
the assumption that the distribution remains Maxwellian
at all times, but with a time-varying temperature and
average velocity. The time-evolution of the average ve-
locity and temperature can be derived from the space-
averaged distribution fi0, following quasi-linear theory
[19–21]. The distribution follows a quasi-linear diffusion
equation: ∂tf0(v, t) = ∂v · D̄ · ∂vf0(v, t), with the follow-
ing quasi-linear operator:

D̄ =
q2i

2M2
i

∑
k

|φ̂k|2kkIm
1

ωk − k · v
. (4)

By taking the moments of fi0, one can calculate the av-
erage flow and thermal energy, 〈v〉 = n−1i

∫
d3vvfi0(v, t)

and kBTi = 1
3Mi(〈v2〉 − 〈v〉2). Both are coupled via the

time-varying ion susceptibility χi, so we get the following
system of coupled equations:

d〈v〉
dt

=
−1

8πMini

∑
k

|φ̂k|2k2Im(χik)k, (5)

dkBTi
dt

=
1

12πni

∑
k

|φ̂k|2k2 (ωk − k · 〈v〉) Im(χik),(6)

χik(t) =
−ω2

pimi

2k2kBTi
Z ′

[
ωk − k · 〈v〉
k
√

2kBTi/mi

]
, (7)

where Z ′ is the plasma dispersion function. Eq. (5) is
similar to that of Williams et al. [15] if φpk is estimated
for the case of laser beams with parallel polarizations.

The total energy of the ions Utot = 1
2Mi〈v2〉 is

distributed between thermal and flow energy, Utot =
3
2kBTi + Uflow where Uflow = 1

2Mi〈v〉2. Note that
for beat waves from lasers with identical frequency, i.e.
ωk = 0, there is no net transfer of energy to the plasma
since dUtot/dt = 0 per Eqs. (5)-(6); there is however a
redistribution of the total energy of the ions from flow
energy to heat. The implication is that even for config-
urations where all the laser beams have the same wave-
length, if beams cross in a flowing plasma they will not

only exchange energy [22], but will also reduce the plasma
flow and increase the ion temperature.

This reduced model is compared to our particle code in
Fig. 3. Because ion-ion collisions thermalize the distri-
bution quickly enough, this simple model reproduces the
code’s result to better than 20% for the temperature and
CBET gains, and to a few % for the momentum. The
disagreement for Ti comes from the fact that the distri-
bution from the particle code still maintains a slight tail
even at later times when t� τii. The agreement is better
for the momentum which is only the first order moment
of fi0 and is less sensitive to variations in the detailed
shape of the distribution function. This simple model
could in principle be included in hydrodynamics codes
without major impact on the computation time. This
would improve the description of the hydrodynamics con-
ditions in regions where many laser beams overlap, and
would also reduce the self-consistently calculated CBET
linear gains.

Turbulent ion heating could also modify other laser-
plasma interaction processes occurring in regions where
many laser beams overlap, such as the re-amplification of
backscatter light generated by a single laser beam inside a
NIF target by all the other incoming laser beams crossing
the backscatter wave on its way out [23].

In conclusion, we have shown that strong ion heating
can occur when multiple laser beams overlap in plasmas.
The numerous beat waves between pairs of crossing laser
beams drive electrostatic perturbations which can trans-
fer energy and momentum to the ions, leading to turbu-
lent heating and plasma drift. For typical NIF conditions,
the ion temperature can be increased at rates of several
keVs/ns. This in turn saturates the cross-beam energy
transfer process, with a drop in linear gains by 4-5× in
less than a nanosecond. A simple quasi-linear model is
shown to reproduce the main observables from the parti-
cle code. The heating rate eventually slows down as the
increase in ion acoustic velocity pushes the ion acoustic
resonance away from the laser-driven beat waves. One
could envision using controlled CBET to locally heat the
plasma and mitigate other laser-plasma interaction pro-
cesses.
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